Copied to
clipboard

G = C24.6Dic3order 192 = 26·3

2nd non-split extension by C24 of Dic3 acting via Dic3/C6=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C24.6Dic3, (C2×C6)⋊8M4(2), (C23×C6).9C4, C12.450(C2×D4), (C2×C12).484D4, (C23×C4).13S3, (C23×C12).15C2, (C22×C12).25C4, C33(C24.4C4), (C22×C4).419D6, C6.44(C2×M4(2)), C12.55D427C2, C12.89(C22⋊C4), (C2×C12).871C23, C223(C4.Dic3), (C22×C4).16Dic3, C23.33(C2×Dic3), C4.21(C6.D4), (C22×C12).543C22, C22.48(C22×Dic3), C22.18(C6.D4), (C2×C3⋊C8)⋊29C22, C4.141(C2×C3⋊D4), C6.67(C2×C22⋊C4), (C2×C4.Dic3)⋊7C2, (C2×C12).280(C2×C4), (C2×C4).64(C2×Dic3), C2.4(C2×C6.D4), C2.11(C2×C4.Dic3), (C2×C4).259(C3⋊D4), (C2×C6).191(C22×C4), (C2×C4).813(C22×S3), (C22×C6).134(C2×C4), (C2×C6).108(C22⋊C4), SmallGroup(192,766)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C24.6Dic3
C1C3C6C12C2×C12C2×C3⋊C8C12.55D4 — C24.6Dic3
C3C2×C6 — C24.6Dic3
C1C2×C4C23×C4

Generators and relations for C24.6Dic3
 G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e6=d, f2=de3, ab=ba, faf-1=ac=ca, ad=da, ae=ea, bc=cb, fbf-1=bd=db, be=eb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=e5 >

Subgroups: 344 in 190 conjugacy classes, 79 normal (21 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C22, C6, C6, C6, C8, C2×C4, C2×C4, C2×C4, C23, C23, C23, C12, C12, C2×C6, C2×C6, C2×C6, C2×C8, M4(2), C22×C4, C22×C4, C22×C4, C24, C3⋊C8, C2×C12, C2×C12, C2×C12, C22×C6, C22×C6, C22×C6, C22⋊C8, C2×M4(2), C23×C4, C2×C3⋊C8, C4.Dic3, C22×C12, C22×C12, C22×C12, C23×C6, C24.4C4, C12.55D4, C2×C4.Dic3, C23×C12, C24.6Dic3
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, C23, Dic3, D6, C22⋊C4, M4(2), C22×C4, C2×D4, C2×Dic3, C3⋊D4, C22×S3, C2×C22⋊C4, C2×M4(2), C4.Dic3, C6.D4, C22×Dic3, C2×C3⋊D4, C24.4C4, C2×C4.Dic3, C2×C6.D4, C24.6Dic3

Smallest permutation representation of C24.6Dic3
On 48 points
Generators in S48
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 34)(14 35)(15 36)(16 25)(17 26)(18 27)(19 28)(20 29)(21 30)(22 31)(23 32)(24 33)(37 43)(38 44)(39 45)(40 46)(41 47)(42 48)
(1 40)(2 41)(3 42)(4 43)(5 44)(6 45)(7 46)(8 47)(9 48)(10 37)(11 38)(12 39)(13 28)(14 29)(15 30)(16 31)(17 32)(18 33)(19 34)(20 35)(21 36)(22 25)(23 26)(24 27)
(1 46)(2 47)(3 48)(4 37)(5 38)(6 39)(7 40)(8 41)(9 42)(10 43)(11 44)(12 45)(13 28)(14 29)(15 30)(16 31)(17 32)(18 33)(19 34)(20 35)(21 36)(22 25)(23 26)(24 27)
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)(37 43)(38 44)(39 45)(40 46)(41 47)(42 48)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 33 10 30 7 27 4 36)(2 26 11 35 8 32 5 29)(3 31 12 28 9 25 6 34)(13 42 22 39 19 48 16 45)(14 47 23 44 20 41 17 38)(15 40 24 37 21 46 18 43)

G:=sub<Sym(48)| (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,34)(14,35)(15,36)(16,25)(17,26)(18,27)(19,28)(20,29)(21,30)(22,31)(23,32)(24,33)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,40)(2,41)(3,42)(4,43)(5,44)(6,45)(7,46)(8,47)(9,48)(10,37)(11,38)(12,39)(13,28)(14,29)(15,30)(16,31)(17,32)(18,33)(19,34)(20,35)(21,36)(22,25)(23,26)(24,27), (1,46)(2,47)(3,48)(4,37)(5,38)(6,39)(7,40)(8,41)(9,42)(10,43)(11,44)(12,45)(13,28)(14,29)(15,30)(16,31)(17,32)(18,33)(19,34)(20,35)(21,36)(22,25)(23,26)(24,27), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,33,10,30,7,27,4,36)(2,26,11,35,8,32,5,29)(3,31,12,28,9,25,6,34)(13,42,22,39,19,48,16,45)(14,47,23,44,20,41,17,38)(15,40,24,37,21,46,18,43)>;

G:=Group( (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,34)(14,35)(15,36)(16,25)(17,26)(18,27)(19,28)(20,29)(21,30)(22,31)(23,32)(24,33)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,40)(2,41)(3,42)(4,43)(5,44)(6,45)(7,46)(8,47)(9,48)(10,37)(11,38)(12,39)(13,28)(14,29)(15,30)(16,31)(17,32)(18,33)(19,34)(20,35)(21,36)(22,25)(23,26)(24,27), (1,46)(2,47)(3,48)(4,37)(5,38)(6,39)(7,40)(8,41)(9,42)(10,43)(11,44)(12,45)(13,28)(14,29)(15,30)(16,31)(17,32)(18,33)(19,34)(20,35)(21,36)(22,25)(23,26)(24,27), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,33,10,30,7,27,4,36)(2,26,11,35,8,32,5,29)(3,31,12,28,9,25,6,34)(13,42,22,39,19,48,16,45)(14,47,23,44,20,41,17,38)(15,40,24,37,21,46,18,43) );

G=PermutationGroup([[(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,34),(14,35),(15,36),(16,25),(17,26),(18,27),(19,28),(20,29),(21,30),(22,31),(23,32),(24,33),(37,43),(38,44),(39,45),(40,46),(41,47),(42,48)], [(1,40),(2,41),(3,42),(4,43),(5,44),(6,45),(7,46),(8,47),(9,48),(10,37),(11,38),(12,39),(13,28),(14,29),(15,30),(16,31),(17,32),(18,33),(19,34),(20,35),(21,36),(22,25),(23,26),(24,27)], [(1,46),(2,47),(3,48),(4,37),(5,38),(6,39),(7,40),(8,41),(9,42),(10,43),(11,44),(12,45),(13,28),(14,29),(15,30),(16,31),(17,32),(18,33),(19,34),(20,35),(21,36),(22,25),(23,26),(24,27)], [(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24),(25,31),(26,32),(27,33),(28,34),(29,35),(30,36),(37,43),(38,44),(39,45),(40,46),(41,47),(42,48)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,33,10,30,7,27,4,36),(2,26,11,35,8,32,5,29),(3,31,12,28,9,25,6,34),(13,42,22,39,19,48,16,45),(14,47,23,44,20,41,17,38),(15,40,24,37,21,46,18,43)]])

60 conjugacy classes

class 1 2A2B2C2D···2I 3 4A4B4C4D4E···4J6A···6O8A···8H12A···12P
order12222···2344444···46···68···812···12
size11112···2211112···22···212···122···2

60 irreducible representations

dim11111122222222
type++++++-+-
imageC1C2C2C2C4C4S3D4Dic3D6Dic3M4(2)C3⋊D4C4.Dic3
kernelC24.6Dic3C12.55D4C2×C4.Dic3C23×C12C22×C12C23×C6C23×C4C2×C12C22×C4C22×C4C24C2×C6C2×C4C22
# reps142162143318816

Matrix representation of C24.6Dic3 in GL4(𝔽73) generated by

72000
0100
0010
00072
,
1000
07200
00720
00072
,
72000
07200
00720
00072
,
72000
07200
0010
0001
,
3000
02400
00640
0008
,
0100
46000
0001
0010
G:=sub<GL(4,GF(73))| [72,0,0,0,0,1,0,0,0,0,1,0,0,0,0,72],[1,0,0,0,0,72,0,0,0,0,72,0,0,0,0,72],[72,0,0,0,0,72,0,0,0,0,72,0,0,0,0,72],[72,0,0,0,0,72,0,0,0,0,1,0,0,0,0,1],[3,0,0,0,0,24,0,0,0,0,64,0,0,0,0,8],[0,46,0,0,1,0,0,0,0,0,0,1,0,0,1,0] >;

C24.6Dic3 in GAP, Magma, Sage, TeX

C_2^4._6{\rm Dic}_3
% in TeX

G:=Group("C2^4.6Dic3");
// GroupNames label

G:=SmallGroup(192,766);
// by ID

G=gap.SmallGroup(192,766);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,56,253,758,136,6278]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^6=d,f^2=d*e^3,a*b=b*a,f*a*f^-1=a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,f*b*f^-1=b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^5>;
// generators/relations

׿
×
𝔽